
NASA
Technical

Paper
3018

1990

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Division

An Approximate
Method for Calculating
Three-Dimensional

Inviscid Hypersonic
Flow Fields

Christopher J. Riley

Langley Research Center

Hampton, Virginia

Fred R. DeJarnette

North Carolina State University

Raleigh, North Carolina



Tile use of trademarks or names of manufacturers in this

report is for accurate reporting and ¢1o_ not constitute all

official endorsement, either expressed or implied, of such

products or mamlfactm-ers by the National Aeronautics and
Space Administration.



Abstract

An approximate solution technique has been de-

veloped for three-dimensional, inviseid, hypersonic

flows. Tile method uses Maslen's explicit pressure

equation and the assumption of approximate stream

surfaces ill the shock layer. This approximation

represents a simplification of Maslen's asymmetric

method. The present method presents a tractable

procedure for computing the inviscid flow over three-

dimensional surfaces at angle of attack. The so-

lution procedure involves iterative]y changing the

shock shape in the subsonic-transonic region until the

correct body shape is obtained. Beyond this region,

the shock surface is determined by using a marching

procedure.

Results are presented herein for a spherically

bhmted cone, a paraboloid, and an elliptical cone

at angle of attack. The calculated surface pressures

are compared with experimental data anti finite-

difference solutions of the Euler equations. Shock

shapes and profiles of pressure are also examined.

Comparisons of the results of the present method

with experimental data and detailed predictions are

very good. Since the present method provides a very

rapid computational procedure, it. can be used for

parametric or preliminary design applications. A

useful application would be to incorporate a heating

procedure for aerothermal studies.

Introduction

An approximate solution of the three-dimensional

(3-D) inviscid flow-field equations for hypersonic

speeds is an important design tool, especially for

the prediction of surface heating rates on reentry

vehicles. Coupled inviscid-viscous calculations have

been demonstrated t.o adequately predict the heating

over a wide range of aerothermal environments. (See

refs. 1 to 3.) The 3-D inviseid solutkms used by' these

engineering aeroheating methods differ in complex-

ity from simple modified Ncwtonian theory (ref. 1)
t.o more exact finite-difference solutions of the 3-D

Euler equations (refs. 3 and 4). Modified Newtonian
theory is simple to use, but its accuracy is limited.

Finite-difference solutions of the inviscid equations

(refs. 4 to 7) may be too computer-intensive for a

preliminary design study. A rapid but accurate 3-D

inviscid analysis would significantly enhance current

engineering aerot.hermal capabilities.

Surface heating rates on reentry vehicles may

also be obtained by numerically solving the full a-D

Navier-Stokes equations. (See ref. 8.) Solutions to

the various subsets of the Navier-Stokes equations,

including the parabolized Navier-Stokes (ref. 9) and

viscous shock-layer (refs. 10 to 12) equations, have

also been obtained for 3-D flows. Although these

methods yiehi good results, they require excessive

coinputer storage and CPU (central processing unit)

t.ime to be practical for a preliminary-design envi-

ronment in which a range of geometri,_s and flow

parameters are to be studied. An appr(_ximate 3-D

inviscid method coupled with an engineering aero-

heating prediction inethod can easily be run on a

computer workstation and complements the more ac-

curate CFD (coinputational fluid dynainies) methods

in the design of reentry vehicles.

MaMen (ref. 13) developed an approximate invis-

cid flow-feld method for axisynmmtric bodies in the

early 1960's. Fronl simplifications made for hyper-

sonic speeds, Maslen obtained an explicit expression

for the first-order pressure along lines nornml to the
shock wave. Since the body shape is determined from

a given shock shape, this method is referred to as an

inverse technique. Solving for a specifed body shape

can be accomplished indirectly by iteration of the

shock shape. (See refs. 14 and 15.) This technique

gives reasonable results, but the first-order pressure

equation is inaccurate on the conical afterbody of a

spherically bhmted cone.

Maslen subsequently outlined a method for three-

dimensional inviscid flow (ref. 16), and improved the
explicit pressure equation by deriving a second-order

approximation of the nlonlentunl equation normal

to the shock. Although more accurate, the a-D

method is complicated and unwiehty. In fact., only

preliminary results were presented for bhmt-body

flows. (See refs. 17 and 18.)

The present analysis simplifies the asymmetric
problem by using two stream functions that approx-

inrote the actual stream surfaces in the shock layer

and a reduced form of the Maslen second-order pres-

sure equatiou. Thus, the present method, while ap-

plicable to three-dimensional flows, retains the util-

ity and accuracy of Maslen's axisymmet tic technique.

Comparisons of the present results in terms of pres-

sure profiles, surface distritmtions, and correspond-

ing shock shapes are presented with Euler predictions
and experimental data for spherically bhmted cones,

ellipsoids, and paraboloids at angle of attack.

Symbols

H,b,c,d

e_., er, e O

e(, eft, en

conic section paralneters

(eqs. (19) and (20))

unit veetors of cylindrical

coordinate system

unit vectors of curvilinear

coordinate system
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h(, h3, hn

L

AI

?l

P

P

R

_l, U, W

V

x, B, z

(t

d, ,;3

F

6o

shock radius (eq. (1)), non-

dimensionalized by L

metrics of curvilinear coordi-

nate system (see appendix A)

scale factors of curvilinear co-

ordinate system, nondimen-

sionalized by L

3acobian of coordinate

transformation

reference length

Mach number

coordinate in normal direction,

nondimensionalized by L

position vector from origin of

coordinate system

static pressure, nondimension-

alized by p_ t_

radius of curvature, nondilnen-

sionalized by L

radius in cylindrical coordinate

system, nondimensionalized
by L

velocity components of curvi-

linear coordinate system,

nondimensionalized by }_,

velocity magnitude

velocity vector, nondimension-

alized by I/_

Cartesian coordinate system

referenced to shock or body,

nondinmnsionalized by L

angle of attack

coordinate perpendicular to
shockline and unit normal

vector, nondimensionalized

byL

shock-wave angle relative to

free-stream velocity (see fig. 1)

shock-wave angle in circumfer-

ential direction (see fig. 1)

axial distance from origin at

which integration of shock
variables is started

q

0

P

0,¢

¢

Subscripts:

b

C

J

8

CX)

Analysis

ratio of stream function _'_ to
its value on shock

inclination angle of body

surface with respect to body
axis

curvilinear coordinates ahmg
shock line, nondimensioimlized

by L

density, nondimensionalized by

Poc

shock-wave angle, 0 - b0

stream functions (eq. (9)),

nondimensionalized by
p _c V_c L 2

cylindrical coordinate (see

fig. 1)

value on body

property on conical afterbody
of spherically blunted cone

conic-section parameters

specific to O = Constant plane

marching step

value on shock surface

free-strean_ conditions

Coordinate Systems

For a three-dimensional shock wave, a cylindrical

coordinate system (z,r,¢) is used, and the z-axis
is aligned with the free-stream velocity vector. The

shock-wave geometry (ref. 19) may be described by

r,. = f(z, 0) (1)

Two angles that define the shock-waw_ shape are

1 of
tar, = (2)

Of
tan F = _ cos 60 (3)

A third angle is given by the relation

= 0 - G (4)

All three angles are shown in figure 1. For the special

case of axisymmetric flow, F = F(x), 60 = 0, and
O'_ _.



Next a shock-oriented curvilinear coordinate

system (_,/3, n) is defined with corresponding unit

vectors (e(, e,_3,en) and velocities (u, w, v). This co-
ordinate system (refs. 1 and 20) is appropriate for

hypersonic flow (M_c >> 1) and thin shock layers.

The unit vector ens is the inward vector nornml to

tile shock surface. The coordinates _ and/3 arc cho-

sen such that e_s is in tile direction of the tangen-
tial velocity component just inside the shock surface.

The unit vector e;_ s is perpendicular to e& and ens.
(See fig. 2.) This coordinate system is defined as or-

thogonal at the shock surface but is nonorthogonal in

the shock layer for a general three-dimensional shock.
Tile derivations of the unit vectors and the metrics

in the shock layer are outlined in appendix A.
The postshock relations can be written as

V._ = u_e& + v,.e,_,_ (5)

whereas in general, through the shock layer,

V : ue_ + yen + we;_ (6)

The component of the free-stream velocity tangent t.o

the shock wave is unchanged across the shock wave;

therefore, the unit vectors e(, ei_, and en at the shock
are

e(s = cos Fez + sin F (cos doer - sin b0e0) /

e:_s = sin cSoer + cos [50eo i (7)
ens = sin Fea. - cos F (cos boe r - sin (5oe0)

The differential arc lengths along each coordinate

direction at the shock are h{s d_, ha_.sd/L and hn._ dn,

respectively. The scale factors h@, h/_s, and bus gov-
ern the stretching of the corresponding coordinates.

The scale factor in the n-direction hT,.,, is unity, since

it is a straight-line distance.

Governing Equations

Stream functions. The continuity equation for

three-dimensional flows given by

v. Ov) = o (8)

is satisfied by two stream flmctions, qhe continuity

equation can be written as

pV = V_; x VdP (9)

where tp and _ represent the two stream flmctions

(ref. 16).
As noted in references 13 and 16 for bhmt bodies

at hypersonic speeds, most of the mass flow is near

the shock wave, where the velocity component w

is sinall. A simplifying assumption is made in this

study that w = 0 throughout the shock layer. Thus,

if q5 is set equal to /;( _', becomes

DO puJ
- (10)

On h_

-- = pvJ (11)
0_

where .1 represents the Jacobian of transformation

from ((, fl, n) to (x, y, z) and is given by

(_2)

These definitions of V) and (I) are not unique, and they satisfy the exact flow-field equations only at the shock

wave. The intersections of/3 = Constant planes with the shock surface are referred to as shock lines. Shock

lines are in the direction of the (-eoordinate, and for axisymmetric flow, _ = Constant planes are meridional

planes.

Pressure equation. The momentum equations for steady, inviscid flow inay be written as

p(V. vv) + vp = 0 (13)



Writingtheseequationsin the_,3, it systemgivesth(' followingmomentumequationnormalto theshock:

(  2Et/ ]"u Ov Ov 1 1 i)t s+ _,-- + u2 1 - m 1 1 (14)

where 14 is the radius of curvature of the shock in the (-Tz plane. Transforming this equation from the (,.DI, it

system to a new set of independent variables ({,/7, 77) by using equations (10) and (11) gives

i)I.)g.'._ {/)'v (h_._)[( 1)1 (1 (9F_2]} h_.shi¢.s*lsinFO,.,
(15)

where

Note that U = t on the shock and t! = 0 on the body surface. From the transformation, an exl)ression for the

velocity conlt)onent _, normal to the shock can be obtained and is given by

u Oft h(.J_/_._r/sin F
,, = --= + (leo

rI'h(, Ollly asslunption used in equations (15) and (16) is that. the velocity component tv is equal to zero

throughout the shock laver. However, to obtain explicit expressions for the pressure and normal velocity

comt)onent, additional a,ssumptions are required. The following approximations, which are consistent with the

simplifications in references 13 and 16, are vali(t for hypersonic flow (AIoc >> 1) an(t thin shock htyers:

Op._

<7{

(v# - 1)

--,_1
h¢

_0
o_

4

Equations (15) and (16) can now be simplified as

_,_4",,st,anI" [ 1 1 Ocr'_ H2 -

h_,_,_ t /7 + cos F- ..=_./h,,,_._0/3 ] 2
(17)



all(t

(18)

If hi_._ = r,,., equation (17) beconles Maslen's second-

order pressure equation tk)r axisymmetric flow. (Sec

ref. 16.) The pressure and nornml component of

velocity can now be found explicitly along a line
normal to the shock surNce, since all variatfies in

equations (17) and (18) are evahmted on the shock.

The surface pressure is easily foun(t, since tim st.ream

flmction _!, and, thus, 71are zero on the body. Equa-

tions (17) and (18) are apI)roximate.

Other relations. The energy equation for

steady, adiabatic, inviscid flow reduces to the sin>

pie relation that the total enthalpy of the flow is
constant. Also, for inviscid equilibrium or frozen

flow, the (postshock) entropy is constant along a
streamline. With these two relations, the density

and streamwise comt)onent of velocity u can be com-

puted. (See fig. 3.) The distance fl'om the shock
surface to the body along a line nornml to the shock

is calculated by integrating equation (10) and noting
that the .lacobian and scale factors are functions of

the distance 7t as outlined in appendix A.

These relations for pressure, density, the two ve-

locity components, and shock-layer thickness outline
an inverse method of solution in which the shock

shape (not the body shape) is known. Therefore, the

shock shape must be changed until tile correct body

shape is produced. The resulting iteration procedure
is handled differently in each region of the flow.

Method of Solution

In the stagnation region of a blunt body travel-

ing at hypersonic speeds, the flow is subsonic. Be-
cause of the elliptic behavior of the flow-ficht equa-

tions in this region, a marching scheme is not well

posed. Thus, tile complete shoek shape for the entire
subsonic-transonic region must be deternfined iter-

atively. A inarching procedure is then used down-
stream of the subsonic-transonic region, where the

flow is completely supersonic.

Subsonic-transonic re9ion. In this investiga-

tion, the blunt-nose region of the body' in a body-

oriented coordinate system is represented by a longi-

tu(tinal conic section with an elliptical cross section

as

2 = 2RbZ b bt,z _ (19)Bb9 2 + zb

where R b is the nose radius of tile body in the Xb-Z b

plane relative to the principal shock radius of cur-

wmu-e in the :r-z plane, bl_ determines lhe longitudi-

nal shape of tilebody. and Bt_ governs the ellipticity

of tile body (:rows section. Van Dyke and Gordon

(ref. 21) suggested that a conic-section body shape
produces a shock surface that can also be described

by a conic section. This assumption is used in the

present analysis. Since a three-dimensional shock
needs to be specified, hmgitudinal conic sections are

blended in the circumDrential direction by using one

or more elliptical arcs to produce the shock surface in

tim subsonic region. One advantage to this approach

in that parameters are easily added by blending more
conic sections.

The equation of the longitudinal (0 = Constant)

conic sections is given by

7.s'2+ bi:r2 - 2ci:rs + dia:srs = 0 (20)

where bi, ci, and di are parameters local to a plane
where 0 is constant in the wind-orient('d system. At.

each :r-location on the shock, the radii that are de-

termined from equation (20) in each meridional plane

are fit ted with one or more elliptical segments to pro-
duce the cireunfferential variation of the shock ra-

dius. The numl)er of parameters (bi, G, and di) to

calculate then depends on the tmmber of planes. In

this report, only three planes (O = 0, _ = _r/2. and

0 = _) are blended by using one cross-sectional el-

tipse to give a shock surface in the nose region. This
method is adequate for axisymmetric shapes at angle
of attack and for bodies with elliptical cross sections

at moderate angles of attack. However, for elliptical

bodies at. larger angles of attack, more parameters

and more elliptical segments may be needed to accu-

rately describe the shock surface.

hi the iteration procedure, the shock shape is first

assumed t.o be equal to the body shape, and the

conic-section parameters for the shock are chosen

accordingly. Next, the shock standoff distance is

computed from the limiting form of the shock-layer

equations on the stagnation line. (See ref. 1.) Shock
lines are then traced fl'om the stagnation region

to the sonic surface by integrating the following

(tifferential equations that govern the shock shape

along a shock line (3 = Constant):

0/',s

-- tan F cos 5O (21)
Oz



i)o_ tan F sin6_:)

().?' 1",,

(22)

= h._,_tan I" (23)
i):r

- tall F (24)
O.r 0/3

OsinF 1

O.r R
(25)

where :r is tile independent axial coordinate. The

sho('k variables are integrated ahmg each shock

line with a variabh.'-step-size, lhi,'d-order, predictor-

correcter, ordinary differential-equation solver. An-

gles and derivatiw.'s are deternfined by blending the

longitudinal conic sections. The transformation op-

erators used in the development of these equations

are derived in appendix B. Since these equations are

indeterminate at the stagnation line (x._ = 0), the

integration begins a small distance e from the origin
(ref. 19). At .r._ = (, tile coordinate O,s is assumed to

l)eequal It) the curvilinear co()rdinate 3.

The approximate shock-layer equations for pres-

sure, density, velocity, and shock-layer thickness are

used to calculate the positkm of the body at dis-

crete locations. These points are t)laced primarily
near the end of the subsonic-transonic region, where

a good starting solution is crucial to the downstream

marching procedure. The error between the geomet-
ric and calculated distance from tilt' shock to the

body is used to change the parameters of the shock

surface in a quasi-Newton nonlinear equations solver.

If the number of t)arameters is less than the number

of calculated body points, lhe shock is determined

in a least-squares sense. However, lint)roved results

(h)wnstreant are el)rained if the points on the body

surface are matched exactly. Because three planes

are used in this ret)ort, a total of nine parameters

are varied until nine points on tile t)ody have the
correct shock-layer thickness.

Supersonic region. Once past the transonic

region, the flow is totally supersonic and a marching
schenm is well t)osed. Tile shock surface and resulting

shock lines from the transonic region form a starting

solution for the marching procedure.

The differential equations that govern the shock

shape along a shock line are given by equations (21)

to (25). However, in the supersonic region, bo and
&r/O/:l are eompute(t froTh finite differences in tile
circumferential direction at each x-location.

The general nmrching l)rocedure is outlined here.

Starting at xj, t)retticted values f()r the shock vari-

ables (r._, 0._, ¢)._, h,4._, and F_) are ()t)taine(t at ,rj+l

lot each shock line. The angle bo anti the deriva-
tive Oa/O/3 are COml)ute(t fl'()m finite (tilferenccs by

using the predicted values of the shock radius. On

each shock line. the local shock curvature 1/R is var-
ie(t in the approximate shock-layer equations that

govern pressure, density, velocity anti shock-layer
thickness until the cal(:ulated thickness matches the

geometric shock-layer thickness. Conw_rgence usu-

aIly required two or three iterations with the secant
method. These values of the shock curvature are now

used to deternfine (:orre(:te(t values of th(, sht)ck vari-

ames at xj+l for each shock line. Ut)(tate(t values for
(so, 0c*/03, and 1/R are calculated in the same fash-

ion as in the predictor step. Upon completion of the

correcter step at :t'j+ 1 for each shock line. t)redicted

values for the shock variat)les are obtained at :rj+2,
and the entire t)rocess is ret)eated.

Results and Discussion

Results at perfect-gas conttitions are t)resented for

this investigation ovt,r a si)herically bhnlte(t cone, a

t)araboloid, and an ellit)tieal cone at angle of attack.

Solutions are describe(t in a body-oriented coordiImte

system with the circumferential angle 6b equal to 0°

in the windward plane of symmetry and 180 ° along
the leeward ray'. Distances are referenced to the nose

radius of the t)odv. Nondimensional pressures are

obtained by dividing t)y px V_.

Surface pressures obtained with the present tech-

nique for a spherically blunted circular cone at ()o

angle of attack are shown in figures 1 and 5. The

cone half-angle is 10° for 1)oth cases, and the free-

stream Math mmfl)(,rs are 5 an(t 20, respectively.

Coinparisons with a finite-difference solution (ref. 7)

of the inviscid-flow equati(ms show excellent agree-
ment with the higher Mach number results of the

present method. Conq)arisons of the detailed an(t

present results at the lower Mach mlmber conttition

are good. The (tiscrepaneies at this condition may be
the results of shock-layer at)t)rt)ximations use(t in the

present method.

The pressure distribution over 1he 10 ° bhmted

cone at an angle of attack of 10° is shown in fig-

ure 6. The solution in the wind axes over the spher-
ical nose at angle of attack is identical to the nose

solution over a sl)here at 0 ° angle of attack if the

subsonic-transonic region remains on the spherical

cap. The surface pressures along the win(lward ray

again compare favorably with the predicted values

of reference 7. Itowever, in the leeward plane, the
present technique underpredicts the Naval Sm'face



WeaponsCenter (NSWC) sm'facc pressure by an a_-

erage of 10 percent. The circumferential pressure dis-

trilmtion in figure 7, the shock shape in the planes

of symmetry in figure 8, and the pressure profiles in

figures 9 anti 10 confirm the high degree of accuracy

of the technique in the region of the windwar(t plane.

Shock shapes anti surface pressures for a paralt-

oloid at 8 ° angle of attack are prestmted in figures 11

to 13. Experimcntal results are presented al Kce-

stream Math numbers of 9.9 for the sltrface pressures
and 5.73 for the shock shat)e. Although a paral)oloid

ix axisymmetric, the shock shape producett in tim
nose region is fully three-dimensional when the body

is at angle of attack. This comparison is a more sig-

tli_icallt test of the capabilities of the iteration pro-

ccdurc in the subsonic-transonic region than for the

spherically bhmted cones at angle of attack, because
in the wind axes. t}le flow is lit.) l(mger axisymmetric.

For the paraboloid at angle of attack, three longitu-

dinal conic sections were bhmded by using a cross-

sectional ellipse to pro(tucc the shock shape in the

nose region. Six iterations using the quasi-N,'wl(m

nonlinear equations solver were required fbr conver-

gence. Good agrcenmnt (within 8 percent) in surface

pressures between the present method and thc exper-

imental data (rcf. 22) is shown in figures 11 and 12.

In figure 13, the calculated shock lies slightly closer

to the body than does tim experimentally determin(,d

shock shape, but the agreement is good. Comlmr-
isons in reference 22 at. 0 ° angle of attack were made

with the axisymmctric Maslen technique of Zoby and

Graves (ref. 14), and a similar resuh was observed.

Surface pressures over an elliptical cone with a

cone half-angle of 10.26 ° in the windward plane and

an ellipticity of 1.5 arc shown in figures 14 and 15

at a free-stream Maeh mmfl)er of 10. The experi-

mental data (ref. 23) disl)layc(t are for a pointed el-
liptical cone. Since t}lc present method currenlly al-

lows for bhmted bodies only, a very small 1)hmtnvss

is assutncd for tile elliptical cone. Circumferential

pressures are shown for a position far downstream

(:r/R b = 12(1), where the surface pressures shoul(t ap-

proach sharp cone values. As in the case of a spher-

ically bhmted cone at angle of attack, the surface

pressures on the elliptical cone at I0 ° angle of attack

show excellent agreement with the experimental data

near the windward plane, but they diverge a,s the lee-
ward ray is approached. However, viscolts clfects arc

more proitounced in the leeward plane, arm an invis-

cid method is ilot appropriate for calculations in this

region.

To estimate the relative computing times of tile

present technique and more exact methods that nu-

merically solve the full inviscid equations, the present

method and the Euler equation solver given in refer-

ence 7 were run on a CDC _ECyber 170 computer and

run tittles were compared. Solutions ov(,r spherically

bhmted cones with cone half-angles of 5': and 10 ° anti

lengths from 50 to 100 nose radii werc computed for

angles of attack of 0 ° to 10°. Thc Math numbcr for
all causes was 10. Based on these comparisons, the

t)rcsent inctho(t is consistently five tinlcS faster t)er

meridional t)lane than the Euler code of reference 7".

For a 10 ° cone at 10° angle of attack, and for a length
of 50 nose radii, the Eulcr co(h, requires 15(1 CPU sec

of (:omputcr time. while the t)resent lechnique re-
quires 30 sec. Nine meridional planes were us(,d in

the Euler code. and a correst)onding numl)cr of shock

lines wer(, used in the present method.

Solutions were also comt)ut('d ()ver t}_e nose region

of a })hint elliptical cone with an cllipti,'ity of 1.5 us-

ing the present method and the time-d(,t)endent Eu-

ler solver code HALLS (High Alpha I nviseid Sohltion)

of referei_cc 4. Both methods wet(, run ()n a Cray-2 S

supercolllt)lltey, ,;tlld rllll times were C()lllt)D_rcd. For

a length of 0.75 nose ra(tii and a free-stream Mach

numl)er of 10. tlALIS requires 120 CP[; sec, whih' the

t)resent technique requires less than 1 ('PU sec. Sin'-

face l)ressm'e distributions in the planes of symmetry

arc presented in figure 16. The cir(:mnti,rential t)res-
sure distribution at an axial location of 0.4 nose ra(tii

is shown in tigurc 17, and there is excelh,nt agreement

between the pr('sent meth()d and tlALIS. These com-
t)arisons in(ticate that the t)r(,senl technique may })e
nnlch faster than more exa('t CFI) m(q hods for 3-D

nose shapes.

The t)rcscnt at)t)roximate '3-D invisci(t mctho(t has

been shown to t)roduce pressure profil(,s and surface

(listrilmtions and correst)onding shock shat)es that

arc in good agreement with (tetaile(t predictions and

ext)erimental data. The t)roccdure significantly im-

proves the curr(mt engineering capal)ility of predict-

ing inviscid flow fields over 3-D surfaces. Thc t)resent

invisci(t technique may l)e cout)le(t x_ith the acre-
heating pre(tiction method desci'i})ed in referenec 1

to calculate heating rates near the windward plane
of symmetry on reentry vehicles. Th,, speed of the

present method allows it to be easily run on a con>

t)uter workstation; therefore, it is ideal in a (tesign
elIvirolllll("llI.

Concluding Remarks

An approximate technique has 1)_,(m developed
that determines the flow field over bhmt-nose })()(ties

at hypersonic speeds. An explicit expression front

Maslen %r the pressure across the shock layer and

tim assmnption of approxinmte stream surfaces in the

shock layer arc used to strut)lily the tlm'c-dimensional

flow. The method is applied to the solution over

7



sphericallybhmtcdcones,paraboloids,andelliptical
concsat angleof attackfi)r apcrfcctgas.

Thepresenttechniquepredictsshocksurfacesand
shock-layerpropcrticsthat comparefavorablywith
lhc more exact mmwrical solutions and experimen-

tal results. Excellent agreement is obtained near

the windward plane of symmetry. The method is

also very rapid when ('otttparc([ with the more exact

finite-difference solutions of the inviscid cquations, in

particular the solution over three-dimensional (3-D)

bodics. Therefore, this technique is especially attrac-

tive for engineering acroheating methods that require

inviscid hyt)ersonic flow-field information.

NASA Langley Research Center
Itaml)l,m. \.'A 23665-5225
July 11, 1!)!1()



Appendix A

Variation of Unit Vectors and Metrics Across Shock Layer

If P, is the position vector, relative to the origin, for a point on the shock waa_e and P is a p_sition vector
fl)r a point normal to the shock waw' at P.,, then

P((, i'3,7,) = P,s(_,/J) + ne,,,,(_, ,4)

The coordinate directions in the shock layer arc f'omld fi'om the following equations:

e_ = i)_

0P

ed i),;_

0P

e, -- i)tl

(A2)

Differentiating equation (AI) and substituting into equation (A2), using the definition of the ui,it vectors at
the shock (eq. (7)). yields

[( ;/e_ = t%_ 1 - _ e_, + , _ _e _.,

0,4 ' h 3,_ ,

ell _ etl,s

(A3)

whoro

1 1 OF

1 OF cos F Oct

The inetrics fl)t" a nonorthogonal coordinate system are given by

gij = ei .ej (A4)

9



where i and ./ are indices that represent the coordinates _, 3, and .. Therefl_rc,

,[(u. lff 1 -

1 OcT OF x

,q..= 1

0F)[(1)(
•qo_ =g"_ =0

g.¢n = gn:S = 0

The ,Ia.('obian of transfornlati(m from (_,, 3, n) to (:r, !l, z) is given by

,1= I_tol 1,2 = h(_h _ 1- n_ 1- ncos - n--_-,-
" " h,,,_ k l,.s,_,),,_)

The scale factors are defined to I)(, the magnitudes of the vectors and are therefor(,

h_ = (_.t_) i/2 I

), /,

h s = (9_) l_'e

]tn = (g,m) 1/2 = 1

(AS)

(A(i)

(A7)

10



Appendix B

Transformation Operators at Shock Surface

Tile unit vectors a.t the shock in the curvilinear coordinate system ((, 3. _) arc

e& = cos Fe.,. + sin I'(cos hoe,. - sin b,:,e v ) I

e_._ sin _oe,. + cos hoe o

e,,._ sin I'e,. - cos I'(cos _c,er sin bc, eo)

(B1)

If the transformation operators are derived for the curvilincar system with rcslwct to the cylindri,'al coordilmtes

and a position vector P.s on the shock surface is dctincd, the vector may be expressed _ts

P., = :re.,. + fe,. (B2)

where

The derivative of this vector is

r'_ = f(x. O)

dP_ %' + Ox _e,.) f do (133)
= --eT. d:r+ e o+

In curvilincar coordinates, equation (B3) becomes

OP_ d_ + i)P_
dP._ 0_

(B,I)

Using equations (B3) and (BI) and taking th(, dot pr()duct with e.,. gives

i):r O:r
(B5)

This process yields

_ = e(._ • e.,,h.&_

0.3 - e3s ' ea'h"_'s

Taking th(, clot, t)roduct of equations (B3) and (B4) with respect to 0 gives

(B6)

--_ e_ 8 . e O j

O0 e_,_ • % •

03 f n,_,,

(B7)

The transformation operators at th(' shock may now l)e written, using equations (B1), (B(i), t_ud (BT) as

1 i) 0 sin r sinb o 0 ]t%,, O_ - cos F Ox *'._ O0

i1 0 _ cos8 0 0
(BS)

11
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Figure 4. Axial-surface pressure distribution on blunt cone with 0,: = 10°, c_ = 0°, and M _c = 5.
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Figure 5. Axial-surface pressure distribution on blunt, cone with 0c = 10°, o = 0 °, and M.,c = 20.
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Figure 6. Axial-surface pressure distribution on blunt cone with 0c = 10 °, a = 10 °, and M_ = 10.
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Figure 7. Circlllnfer(_'ntia] Slll'face DressuF(' (]istl'i})llti()It Oil })lullt c(nle with Oc

_'_,/ RI_ = 9.6.

= I0 °. (_ = I0 °. ,'fix = 10, and

-Yb/R b

10

5

0

-5

m

Present method
.... NSWC

-10 I I I I I I I I I
-5 0 5 10 15 20

Xb/R b

Figure 8. Shock shape in windward and leeward planes of symmetry for blunt, cone with 0c = 10 °, c_ = 10 °,

and Moc = 10.
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Figure 10. Radial profile of pressure with Oc = 10 °, c_ = 10°, Mac = 10 Xb/R b = 9.6, and ¢b = 180°.
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Figure ll. Axial-surface pressure distribution on paraboloid with c_ = 8° and _hl_: = 9.9.
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Figure 12. Circumferential surface pressure distribution on paraboloid with a
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Figure 15. Circumferential surface pressure distribution on 1.5 elliptical cone with c_ = 10°, _L_ = 10 and

Oc = 10.26 ° (_b = 0°) •
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Figure 16. Axial-surface pressure distribution on 1.5 elliptical nose with a = 0° and/ll_,_ = 10.
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